If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+21.76t-11=0
a = -4.9; b = 21.76; c = -11;
Δ = b2-4ac
Δ = 21.762-4·(-4.9)·(-11)
Δ = 257.8976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21.76)-\sqrt{257.8976}}{2*-4.9}=\frac{-21.76-\sqrt{257.8976}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21.76)+\sqrt{257.8976}}{2*-4.9}=\frac{-21.76+\sqrt{257.8976}}{-9.8} $
| 4w-12=16 | | 4x+6(-x-27)=-182 | | 3y-9=16 | | 9x+3x-10=3(3- | | 2(p-6)=4(2p)-3 | | 6b-27=3(5b-2 | | 9x-10=6x+0 | | 143+7x=x-109 | | 6a+12=a+37 | | 11x-3x+-1=124 | | 7x+21-3x=17 | | 15x-13x=12(4x-7)-(-3-2x) | | 1y=6y+5 | | -1/10x=-3 | | 60-x=12x | | 2(2x+0)=24 | | 12x-1-10x=12+1 | | 2(x+6=24 | | 4x-3(6x+26)=48 | | -8/7=1/2y-2/3 | | 3p+4=2p+12 | | 9z+8=5z=32 | | 8(3m+50=2m-4 | | 13x+2=7x-6=x | | 3g+6(g-2)=-10(g-4)-2g | | 2t-12=3t | | -8x+15=17 | | 3g+6(g-2)=-10g(g-4)-2g | | 10x+5x+25=42.35 | | -2(2a-5)=32-3a+10a | | 10=10x-10/12 | | w^2=-10/3 |